【打印本页】      【下载PDF全文】   查看/发表评论  下载PDF阅读器  关闭
←前一篇|后一篇→ 过刊浏览    高级检索
本文已被:浏览 8394次   下载 6291 本文二维码信息
码上扫一扫!
基于星座轨迹图的射频指纹提取方法
彭林宁,胡爱群,朱长明,姜禹
分享到: 微信 更多
(东南大学信息科学与工程学院 南京 中国 210096;中国运载火箭技术研究院研究发展中心 北京 中国 100076)
摘要:
无线设备的接入安全是当今无线网络安全的一个严重挑战。基于射频指纹的物理层安全技术是解决无线设备接入安全的一个有效途径。在不同于已有的基于瞬态响应和稳态响应的射频指纹特征提取方法上,本文提出了一种使用星座轨迹图(CTF,Constellation Trace Figure)的射频指纹提取方法。在获得的星座轨迹图上,进一步通过K均值聚类提取射频指纹特征并进行设备身份识别。在理论阐述的基础上,本文通过在实际无线通信系统中提取射频指纹特征并进行无线设备身份识别,验证了提出方法的可靠性与实用性。使用基于星座轨迹图的射频指纹特征提取方法不需要获得设备发送信号的先验信息就可以快速获得无线设备唯一的射频指纹特征,可以被用于物理层安全以及无线接入设备的身份识别及认证。
关键词:  物理层安全  接入安全  射频指纹  设备特征  星座轨迹图  软件无线电  K均值  模式识别
DOI:
投稿时间:2015-11-17修订日期:2015-12-10
基金项目:本课题得到江苏省“六大人才高峰”项目资助;国家自然科学基金项目(61571110)资助;CALT基金项目资助。
Radio Fingerprint Extraction based on Constellation Trace Figure
PENG Linning,HU Aiqun,ZHU Changming,JIANG Yu
Institute of Information Science and Engineering, Southeast University, Nanjing 210096, China;Research Center of China Academy of Launch Vehicle Technology, Beijing 100076, China
Abstract:
Wireless device accessing security is a great challenge in wireless communication networks. Radio fingerprint based physical layer security technique is an effective approach to solve this problem. In this paper, a novel radio finger-print extraction based on constellation trace figure (CTF) method is proposed, which distinguishes from classical transient based and modulation based radio fingerprint extraction methods. Furthermore, a K-mean clustering algorithms is adopted for wireless device identification from CTF. From theoretical analysis, a software defined radio experimental system for wireless device identification is built. Experimental verifications show that the proposed CTF based method can successfully extract radio fingerprint without prior information, which could be a suitable solution for wireless device identification and authorization in physical layer security.
Key words:  physical layer security  accessing security  radio fingerprint  device features  constellation trace figure  soft-ware defined radio  K-mean  pattern recognition