引用本文
  • 李建华,刘功申,林祥.情感倾向性分析及应用研究综述[J].信息安全学报,2017,2(2):48-62    [点击复制]
  • LI Jianhua,LIU Gongshen,LIN Xiang.Survey on Sentiment Orientation Analysis and Its Applications[J].Journal of Cyber Security,2017,2(2):48-62   [点击复制]
【打印本页】 【下载PDF全文】 查看/发表评论下载PDF阅读器关闭

←前一篇|后一篇→

过刊浏览    高级检索

本文已被:浏览 7496次   下载 13241 本文二维码信息
码上扫一扫!
情感倾向性分析及应用研究综述
李建华, 刘功申, 林祥
0
(上海交通大学 电子信息与电气工程学院 上海 中国 200240)
摘要:
在情感倾向性分析领域,关于情感的收集、分析和聚合等技术一直是近年来的关注热点。该领域的相关发展带动了各个子任务及其相关研究的大力发展。本文主要综述了面向情感的信息系统中使用的情感分析相关的需求,技术,应用以及评测方法等。在情报分析方面,存在许多不同于传统的主题分析的新需求,这就是对情感分析技术的强烈需求。接着,介绍了词级、句子级、段落篇章级等不同层次的情感分析技术。然后,还综述了采用情感分析技术的各种典型应用。最后,为了工作开展的便利,讨论了情感分析领域的词库资源、样本集资源、评测方法及重要会议等。
关键词:  情感倾向性分析  意见挖掘  文本挖掘  语言处理
DOI:10.19363/j.cnki.cn10-1380/tn.2017.04.005
投稿时间:2016-06-20修订日期:2017-03-07
基金项目:国家自然科学基金(编号:61472248和61431008)
Survey on Sentiment Orientation Analysis and Its Applications
LI Jianhua, LIU Gongshen, LIN Xiang
(School of Electronic & Electronics Engineering, Shanghai Jiao Tong University, Shanghai 200240, China)
Abstract:
The field of sentiment analysis, in which sentiment is gathered, analyzed, and aggregated from text, has seen a lot of attention in the last few years. The corresponding growth of the field has resulted in the emergence of various subareas, each addressing a different level of analysis or research question. This survey covers requirements analysis, techniques, applications and evaluations that promise to directly enable sentiment-oriented information systems. In intelligence area, there are new challenges raised by sentiment aware applications, as compared to those that are already present in more traditional subject-based analysis. Techniques, such as word-level sentiment analysis, sentence-level sentiment analysis, paragraph-level sentiment analysis, are introduced in this paper. There also are several typical sentiment aware applications being reviewed. To facilitate future work, a discussion of available resources, benchmark datasets, and evaluation campaigns is also provided.
Key words:  sentiment orientation analysis  opinion mining  text mining  linguistic processing