引用本文
  • 董方明,梅迪菲,安宝宇,周川,周强,畅东升,王平辉.PDR-SFP:一种快速高效的私有文档检索方法[J].信息安全学报,已采用    [点击复制]
  • Dong Fangming,Mei Difei,An Baoyu,Zhou Chuan,Zhou Qiang,Chang Dongsheng,Wang Pinghui.PDR-SFP:A Fast and Efficient Protocol for Private Docu-ment Retrieval[J].Journal of Cyber Security,Accept   [点击复制]
【打印本页】 【下载PDF全文】 查看/发表评论下载PDF阅读器关闭

过刊浏览    高级检索

本文已被:浏览 140次   下载 0  
PDR-SFP:一种快速高效的私有文档检索方法
0
(1.西安交通大学;2.中移雄安信息通信科技有限公司;3.中国移动通信集团中移系统集成有限公司;4.中移系统集成有限公司)
摘要:
文档检索是信息系统中的一项基本功能,旨在从数据库中检索出与用户查询最相关的一个或多个文档。随着云计算和类似技术的出现,越来越多的计算任务被转移到云服务器上。这一转变引发了重大的隐私问题,因为用户查询文档中的敏感信息可能会暴露给服务器,导致严重后果。为了解决这一问题,保护用户查询隐私变得至关重要。本研究提出了一种旨在保护用户隐私的文档检索方法。利用Regev同态加密来保护查询文档的隐私,确保查询内容即使在服务器上处理也能保持机密。此外,本方法采用Sign-Full随机投影来压缩数据库存储并减少计算开销,从而使检索过程更加高效。与现有方法相比,本方法在速度和存储效率上都有显著改进。具体而言,它的查询时间大约快了101倍,存储空间需求减少了约30倍,同时保持了相当的查询准确性。这些改进使该方法在隐私和效率至关重要的实际应用中非常适用。采用这种方法可以显著提高云环境中文档检索系统的安全性。
关键词:  私有文档检索  隐私查询  同态加密  随机投影  私有信息检索
DOI:
投稿时间:2024-11-13修订日期:2025-02-08
基金项目:
PDR-SFP:A Fast and Efficient Protocol for Private Docu-ment Retrieval
Dong Fangming1,2,3, Mei Difei4, An Baoyu5, Zhou Chuan1,2,3, Zhou Qiang6, Chang Dongsheng4, Wang Pinghui1,2,3
(1.Xi'2.'3.an Jiaotong University;4.China Mobile Xiong’an Information and Communication Technology Co. LTD;5.China Mobile Information System Integration Co. LTD;6.China Mobile System Integration Co. LTD)
Abstract:
Document retrieval plays a crucial role in information systems, aiming to identify documents from a database that are most relevant to a user’s query. With the growth of cloud computing and similar services, many tasks, including docu-ment retrieval, are increasingly offloaded to cloud servers. However, without proper privacy protection, sensitive infor-mation in a user’s query document could be exposed to the server, potentially leading to significant privacy risks. To ad-dress this issue, this study introduces a privacy-preserving approach for secure document retrieval. The proposed method leverages Regev’s homomorphic encryption, enabling the privacy of user query data to remain protected during the re-trieval process. Additionally, to improve efficiency and reduce storage requirements, the method incorporates Sign-Full random projection, which compresses the database and minimizes computational load. This unique combination of en-cryption and data compression allows for faster query processing while protecting sensitive information from unauthor-ized access. Compared to existing document retrieval methods, this approach offers considerable improvements in both speed and storage efficiency. Query times are reduced by approximately 101 times, and storage space requirements are cut by about 30 times, all while maintaining competitive accuracy in document matching. By balancing performance and privacy, this approach supports the secure and efficient handling of sensitive queries, making it well-suited for cloud-based applications where data protection is paramount. This study’s findings suggest a promising pathway for pri-vate and efficient document retrieval in cloud environments.
Key words:  private document retrieval  private query  homomorphic encryption  random projection