引用本文
  • 李瑞,梅文明,孟祥,徐锦龙,张萌,邱兰馨,汤亿则,魏冬,贺琛.CPR-PKG:双极化天线系统中基于信道极化响应的物理层密钥生成[J].信息安全学报,已采用    [点击复制]
  • Li Rui,Mei Wenming,Meng Xiang,Xu Jinlong,Zhang Meng,Qiu Lanxin,Tang Yize,Wei Dong,He Chen.CPR-PKG: Exploiting Channel Polarization Response for Physical-Layer Secret Key Generation in Dual-polarized Antenna Systems[J].Journal of Cyber Security,Accept   [点击复制]
【打印本页】 【下载PDF全文】 查看/发表评论下载PDF阅读器关闭

过刊浏览    高级检索

本文已被:浏览 33次   下载 0  
CPR-PKG:双极化天线系统中基于信道极化响应的物理层密钥生成
李瑞1,2, 梅文明3, 孟祥1, 徐锦龙1,2, 张萌1,2, 邱兰馨4, 汤亿则4, 魏冬1,2, 贺琛4
0
(1.中国科学院信息工程研究所;2.中国科学院大学网络空间安全学院;3.国家电网有限公司;4.国家电网浙江省电力有限公司)
摘要:
物理层密钥生成是一种利用无线信道的互易性和随机性生成加密密钥的前沿无线安全技术。然而,现有方案普遍存在信道信息利用率低、易受噪声干扰以及受设备技术异构性限制等问题。为应对这些挑战,本文提出一种基于信道极化响应的新型物理层密钥生成方案(CPR-PKG),该方案同时适用于高性能通信设备与边缘物联网设备。本方案的核心创新在于提取并利用信道极化响应,其能够捕获传播环境中散射体的详细物理属性信息。与传统方法通常依赖调制信号或特定信道特征不同,CPR提取利用全部原始射频信号,从而实现对信道更高效、更细粒度的表征,增强了密钥生成随机源的丰富性与独特性。此外,为提高在实际噪声环境下的鲁棒性,我们提出一种有效的信号处理方法,能够在保证较高密钥生成率的同时显著降低噪声影响,并结合高效的量化与协调机制,将处理后的信道测量值转化为随机性高、一致性好的比特序列。CPR-PKG方案还具有突出的兼容性与易部署性。该方法无需修改硬件芯片,也不依赖特定通信协议,可灵活适用于多种无线系统。为验证性能,我们基于软件无线电平台实现了CPR-PKG并进行了实验评估。结果表明,所提方案的密钥生成率最高可达现有基准方法的20倍,且在频域处理中表现出高效性。在-10 dB至30 dB的信噪比范围内,比特失配率始终低于4%。安全性分析进一步证实,CPR-PKG能够有效抵抗两种典型物理层攻击,所生成密钥均通过NIST统计测试套件的严格随机性检验,具备良好的适用性。
关键词:  物理层安全  密钥生成  极化
DOI:
投稿时间:2025-10-17修订日期:2025-12-19
基金项目:国家电网有限公司总部管理科技项目
CPR-PKG: Exploiting Channel Polarization Response for Physical-Layer Secret Key Generation in Dual-polarized Antenna Systems
Li Rui1,2, Mei Wenming3, Meng Xiang1, Xu Jinlong1,2, Zhang Meng1,2, Qiu Lanxin4, Tang Yize4, Wei Dong1,2, He Chen4
(1.Institute of Information Engineering, Chinese Academy of Sciences;2.School of Cyber Security,University of Chinese Academy of Sciences,Beijing;3.State Grid Corporation of China;4.State Grid Zhejiang Electric Power Corporation)
Abstract:
Physical-layer secret key generation is a promising wireless security technique that exploits the reciprocity and randomness of wireless channels to generate cryptographic keys. However, existing approaches often suffer from several limitations, including inefficient utilization of channel information, sensitivity to noise interference, and constraints due to technological heterogeneity among devices. To address these challenges, this paper proposes a novel Channel-Polarization-Response-based Physical-layer Secret Key Generation (CPR-PKG) scheme, which is designed to be suitable for both high-performance communication systems and resource-constrained edge IoT devices. The core innovation lies in the extraction and application of the Channel Polarization Response (CPR), which captures detailed physical property information of scatterers within the propagation environment. Unlike conventional methods that may rely on modulated signals or specific channel features, CPR extraction utilizes the entirety of the raw radio frequency (RF) signals. This enables a more efficient and fine-grained characterization of the channel, thereby enhancing the richness and uniqueness of the source randomness for key generation. Furthermore, to ensure robustness in practical noisy environments, we introduce an effective signal processing method that significantly minimizes the impact of noise while maintaining a high key generation rate. This is complemented by an efficient quantization and reconciliation mechanism that transforms the processed channel measurements into a highly randomized and consistent bit sequence. An additional advantage of the CPR-PKG scheme is its strong compatibility and ease of deployment. The method operates without requiring modifications to hardware chips or dependency on specific communication protocols, making it readily adaptable to diverse wireless systems. To validate the performance, we implemented and evaluated CPR-PKG using a software-defined radio (SDR) testbed. Experimental results demonstrate that the proposed scheme achieves a key generation rate up to 20 times higher than existing benchmark methods, while maintaining high efficiency in the frequency domain. Moreover, it exhibits reliable performance across a wide signal-to-noise ratio (SNR) range from -10 dB to 30 dB, with a bit mismatch rate consistently below 4%. Security analyses confirm that CPR-PKG can effectively resist two classic physical-layer attacks, and the generated keys successfully pass the rigorous randomness tests of the NIST statistical test suite, confirming their suitability.
Key words:  physical-layer security, secret key generation, polarization